LI HASSANI

ahassanijr@gmail.com | alihassanijr.com

in alihassanijr | Google Scholar | Qalihassanijr | Jalihassanijr

Atlanta, Georgia, United States.

Last update: July 28, 2025

EDUCATION

Georgia Institute of Technology

2024 - 2026 (expected)

PhD in Computer Science

Atlanta, GA.

- Thesis: Reducing the $O(n^2)$ complexity of Attention at the Threadblock Level.
- GPA: 4.00

University of Oregon

2021 - 2023

MS in Computer Science

Eugene, OR.

- Thesis: Escaping the big data paradigm with compact transformers.
- ∘ GPA: 4.22

· University of Kerman

BS in Computer Science

2016 - 2020

Kerman, Iran.

- Thesis: Clustering-based feature selection.
- o GPA: 3.81

SELECT PUBLICATIONS

- [2025] Ali Hassani et al. Generalized Neighborhood Attention: Multi-dimensional Sparse Attention at the Speed of Light. Preprint.
- [2024] Ali Hassani, Wen-Mei Hwu, and Humphrey Shi. Faster Neighborhood Attention: Reducing the $O(n^2)$ Cost of Self Attention at the Threadblock Level . In Advances in Neural Information Processing Systems (NeurIPS).
- [2023] Ali Hassani et al. Neighborhood Attention Transformer . In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
- [2022] Ali Hassani and Humphrey Shi. Dilated Neighborhood Attention Transformer . Preprint.
- [2021] Ali Hassani and Steven Walton et al. Escaping the Big Data Paradigm with Compact Transformers . Preprint.

RESEARCH INTERESTS

- **Deep learning / AI architecture:** Developing high-performance and efficient neural network architectures, attention-based architectures.
- High performance AI / ML systems: Analytical performance models, performance optimizations (i.e. software pipelining, kernel fusion, and the like), developing new implementations / compute kernels.

EXPERIENCE

• SHI Labs at Georgia Tech

01/2024 - Present

Graduate Research Assistant

Atlanta, GA.

- \circ Conducted research in high-performance AI and ML systems.
- Worked on improved software infrastructure for multi-dimensional sliding window / neighborhood attention: FNA (NeurIPS 2024) and GNA (under review, collaboration with NVIDIA).
- Worked on a tensor parallelism solution within the NVIDIA CUTLASS framework (collaboration with NVIDIA).

NVIDIA Research

12/2024 - 07/2025

- Research Intern Remote position Helped develop a parallelism strategy that scaled video / world generation to real-time level on a GB200 NVL72
- rack, without any distillation, quantization, or sparsity. Conducted research on sparse attention methods for accelerating Video / World Foundation Models on modern
- GPU architectures. Developed Generalized Neighborhood Attention (GNA), accompanied by an analytical performance model, and

Fused Attention kernels for the Hopper and Blackwell architectures offering FLOP-proportional speedups.

• Used a profiling approach to introduce GNA into the Cosmos Predict2 Video-to-World model, which results in up to **2.6X end-to-end inference speedup** with minimal loss in quality.

• NVIDIA 05/2024 - 08/2024

Software Performance Engineering Intern

Remote position

 Worked on low-latency matrix multiply (GEMM) kernels in CUTLASS for memory-bandwidth-bound LLM inference workloads.

- Developed a Top-K and softmax GEMM fusion in CUTLASS targeting Mixture-of-Experts (MoE) workloads. Featured in NVIDIA developer blog on inline PTX as a performance optimization technique.
- Worked on Distributed GEMM, a CUTLASS-native framework for running tensor parallel GEMMs. Featured in GPU MODE ■.

• HippoML 06/2023 - 12/2023

Software Engineering Intern

Remote position

- Worked on bringing state-of-the-art Generative AI models to various hardware accelerators through system co-design.
- Contributed to building the core engine, CUTLASS backend, and quantization solutions for attention and convolution.

SHI Labs at University of Oregon

03/2021 - 12/2023

Graduate Research Assistant

Eugene, OR.

- Conducted research in computer vision and ML systems.
- Developed Neighborhood Attention: a localized attention pattern bringing linear complexity and convolution-like behavior and inductive biases to attention.
- Created and developed NATTEN: a PyTorch extension providing fast implementations of neighborhood and sliding window attention approaches.
- Worked on Compact Transformers: mini vision transformers with state of the art image classification performance, trainable on limited data and compute budgets.

• Picsart AI Research 2022

Research Intern

 \circ Conducted research on training large-scale attention-based computer vision models.

PROJECTS

• NATTEN: Deep learning extension for multi-dimensional sliding window attention.

2022 - Present

Remote position

- Offers fast kernels for local, dilated, causal, and strided forms of neighborhood attention, with an easy to use PyTorch interface.
- Kernels cover all NVIDIA GPU architectures since Maxwell.
- Ships fast arch-native kernels for the Hopper and Blackwell architectures, which can realize **theoretically maximum achievable** speedups (proportional to reduction in FLOPs over the fastest available kernels.)
- Enables efficient training and inference for models built with neighborhood attention, and offers a variety of tools for different deep learning architectures, and performance analysis tools.
- Applications range from classical computer vision tasks (image classification, object detection, image segmentation), to generative models (diffusion-based image, video, and world generation), prediction models (weather and climate forecasting), music structure analysis, and more.
- ∘ Featured in GPU MODE ▶.
- Neighborhood Attention Transformer: Efficient subquadratic vision transformers.

2022 - 2023

 $[\mathbf{Q}]$

- Created hierarchical vision transformers that preserve translational equivariance, locality, and global inter-dependency modeling, with subquadratic attention complexity.
- Pre-trained 20M to 200M parameter variants on image classification, extended to downstream tasks such as object detection and various image segmentation tasks.
- \circ Set a new state of the art score for some segmentation tasks at the time of publication.
- Methodology extended later to image generation, and video/world generation.
- Compact Transformers: Train vision transformers with limited data and compute.

2021 - 2022

[0]

- Provides pure PyTorch training recipes for very small vision transformers that can be trained on datasets as small as CIFAR-10, and even on consumer CPUs.
- Achieved state of the art score on Flowers-102, and competitive scores on other datasets.
- Preprint cited over 600 times.
- Featured in Keras examples, and blog post featured in PyTorch's Medium.